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The growing demand for air travel is increasing the need for mitigation of air traffic
congestion and complexity problems, which are already at high levels. At the same time new
information and automation technologies are enabling the distribution of tasks and decisions
from the service providers to the users of the air traffic system, with potential capacity and
cost benefits. This distribution of tasks and decisions raises the concern that independent
user actions will decrease the predictability and increase the complexity of the traffic system,
hence inhibiting and possibly reversing any potential benefits. In answer to this concern, the
authors proposed the introduction of decision-making metrics for preserving user trajectory
flexibility. The hypothesis is that such metrics will make user actions naturally mitigate
traffic complexity. In this paper, the impact of using these metrics on traffic complexity is
investigated. The scenarios analyzed include aircraft in en route airspace with each aircraft
meeting a required time of arrival in a one-hour time horizon while mitigating the risk of
loss of separation with the other aircraft, thus preserving its trajectory flexibility. The
experiments showed promising results in that the individual trajectory flexibility
preservation induced self-separation and self-organization effects in the overall traffic
situation. The effects were quantified using traffic complexity metrics, namely dynamic
density indicators, which indicated that using the flexibility metrics reduced aircraft density
and the potential of loss of separation.

Nomenclature

ADP Adaptability

RBT Robustness

RTA Required Time of Arrival

(t,x,y) (time, x-location, y-location)

V Ground speed

hi , hmin,hmax Heading with its maximum and minimum values

Traj Trajectory

P i Probability of trajectory instance traj i
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P c Probability of constraint situation c

Pf Probability of feasibility

P f,c Probability of feasibility in constraint situation c

f(t,x,y) Number of feasible trajectories from (t,x,y) to destination

fc(t,x,y) Number of feasible trajectories from (t,x,y) to destination in situation c

i(t,x,y) Number of infeasible trajectories from (t,x,y) to destination

ic(t,x,y) Number of infeasible trajectories from (t,x,y) to destination in situation c

N(t,x,y) Number of all trajectories from (t,x,y) to destination

g(x,y) or gk(x,y) Number of trajectories from k=(t,x,y) to next time step

s Duration between time increments

AT Time horizon for conflict detection

I. Introduction

I
n order to handle the expected increase in air traffic, the Next Generation Air Transportation System (NextGen)
will introduce key transformations in Air Traffic Management (ATM). 1 Three examples are: increasing

information sharing through net-enabled information access; making access to National Airspace System (NAS)
resources dependent on aircraft equipage; and aircraft trajectory-based operations enabled by aircraft ability to
precisely follow customized four dimensional (4D) trajectories. 1 These capabilities enable shifting the ATM system
towards a distributed architecture. 2 For example, NextGen is investigating delegating more responsibility for traffic
separation to the pilot2,3 and delegating more responsibility to airline operation centers for traffic flow
management3,4 . Enabling the gains of distributed decision making depends on the ability of distributed actions, by
airborne and ground-based agents, to maintain safety and efficiency at acceptable levels.

Research on distributed ATM has focused, in part, on the distribution of separation responsibility between pilots
and controllers. 5,6,7,8,9 Neglecting to regulate traffic beyond the separation assurance time horizon may cause
complex traffic situations, which may be difficult to control whether by ground-based or by aircraft-based agents,
leading to compromised safety. Therefore, reducing or preventing such situations is a prerequisite to enabling
manageable separation assurance and safety. In order to mitigate traffic complexity, ground and airborne systems
may benefit from preserving trajectory flexibility. Trajectory flexibility preservation enables an aircraft to plan its
trajectory such that it preserves a requisite level of maneuvering flexibility in order to accommodate later
disturbances caused, for example, by other traffic and weather activity. The hypothesis is that if each aircraft
preserves its own trajectory flexibility, using an air-based or ground-based system, acceptable traffic complexity will
naturally be achieved. As discussed in Idris et al., although flexibility preservation does not explicitly coordinate
between aircraft, it assists each by reducing the risk of conflict due to the potential behavior of the surrounding
traffic, thus resulting in implicit coordination. 1 0,11 This function offers a trajectory-oriented approach to managing
traffic complexity, by explicitly planning aircraft trajectories, such that their contribution to complexity is
minimized. This is contrasted with airspace-oriented approaches that aim to ensure that airspace characteristics (such
as sector size and route patterns) and traffic characteristics (such as aircraft density) are designed to dynamically
limit traffic complexity.

Flexibility preservation complements separation assurance both within the conflict resolution horizon and
beyond it to an extended flexibility planning horizon. Within the conflict resolution horizon, flexibility aids in
selecting conflict resolution solutions that afford the aircraft more flexibility, for example, to adapt to potential
intruder behavior. Beyond the conflict resolution horizon, which is the focus of this paper, flexibility preservation
plans the aircraft trajectory to minimize its exposure to disturbances such as weather cells and dense traffic. Fig. 1
depicts an example. In its left portion each aircraft, while planning its trajectory between weather cells, questions
whether it should modify its trajectory to increase flexibility. If the aircraft proceed along their depicted headings, a
complex traffic situation arises causing excessive congestion and a high potential conflict rate. On the other hand,
the right portion displays a structured traffic pattern that would result if each aircraft maneuvered to increase its own
flexibility.
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Figure 1 Trajectory flexibility preservation avoiding weather cells and congestion

To test this hypothesis, trajectory flexibility metrics have been defined in previous work to represent robustness
and adaptability to the risk of violating separation, airspace hazards, and traffic flow management constraints. 1 1-13

The impact of trajectory planning by preserving these metrics is analyzed on traffic complexity metrics selected
from the literature. Many approaches have been documented to define and measure traffic complexity, most often as
a function of controller workload. For example, dynamic density measures traffic complexity using a number of
factors. These factors are primarily based on airspace geometry such as aircraft density, sector geometry, traffic flow
structure, and mix of aircraft types and performance characteristics. 14-17 Other efforts emphasized cognitive elements
of complexity, in particular the controller use of standard flows, grouping of traffic, and merge points. 18 Some
metrics have been proposed that are independent of the airspace structure and controller perspective. For example,
Delahaye et al. 19 introduced complexity metrics based on traffic organization or disorder based on Lyapunov
exponents. In a previous paper20, the impact of preserving trajectory flexibility was analyzed on the Lyapunov-
exponent-based metrics. In this paper the impact on dynamic density metrics is analyzed.

Two scenarios are analyzed in two-dimensional en route airspace, where each aircraft must meet a required time
of arrival (RTA) in a one-hour time horizon using speed and heading degrees of freedom. Simultaneously, each
aircraft preserves its trajectory flexibility, using the defined metrics, to mitigate the risk of loss of separation with
hazards and the other aircraft. The effects are quantified using traffic complexity metrics based on flow pattern
consistency and dynamic density. The experiments showed promising results in terms of mitigating complexity as
measured by these metrics.

II. Metrics

Metrics that represent trajectory flexibility have been developed and reported in previous papers. 12,13 They are
summarized briefly in this section. To test the hypothesis, traffic complexity metric were also selected. These
metrics are also briefly described in this section.

A. Trajectory Flexibility Metrics
The notion of “trajectory flexibility” was defined in Idris et al. 11 as the ability of the trajectory (and hence the

aircraft following the trajectory) to abide by all constraints imposed on it while mitigating its exposure to risks that
cause violation of these constraints. The constraints intend to achieve ATM and aircraft objectives and include
heading limits, RTAs, and separation minima. They define the trajectory solution space. Risk of constraint violation
is represented by disturbances that cause the aircraft trajectory to violate or potentially violate constraints.
Disturbances were classified in Idris et al. 1 1-13 into state disturbances that result in aircraft state deviation along its
trajectory or constraint disturbances such as new constraints or modifications of currently imposed or known
potential constraints.

Two trajectory characteristics relevant to measuring this notion of flexibility have been identified: robustness
and adaptability. 11 Metrics have been proposed for robustness and adaptability based on estimating the number of
feasible trajectories available to the aircraft to accommodate disturbances. 12,13 They are summarized here briefly. In
order to support these definitions and estimation methods, the aircraft is assumed to follow segments of discrete time
length, where instantaneous heading and speed changes can only occur at discrete instances in time that are s apart.



Also, heading h and speed V take discrete values between hmin and hmax and between Vmin and Vmax and are constant
along each segment. (Altitude is not considered in this paper.) In addition to simplifying the estimation method,
these assumptions are reasonable from an operational point of view considering the intended application of the
trajectory flexibility metrics. Namely, the metrics are intended for relative comparison of trajectories over a long
time horizon suitable for strategic planning (typical of traffic flow management planning horizon) as opposed to
tactical maneuvering (where the dynamics of the speed and heading change are relevant).

(1)Robustness is defined as the ability of the aircraft to keep its planned trajectory unchanged in response to the
occurrence of disturbances, for example, no matter which trajectory or conflict instances materialize. A robustness
metric RBT(t, x, y) is measured with the probability of feasibility P f(traj) of the trajectory (traj) starting from a state
(t, x, y) and ending at another state such as (RTA, xdest, ydest). Pf(traj) can be estimated with partial information about
state and constraint disturbances, modeled with probability distributions that represent the risk of constraint
violation. As an example, the constraints are modeled with C constraint situations c, each with a probability P c

with ∑ Pc = 1. Each constraint situation c divides the total set of trajectories N(t, x, y) into two mutually exclusive
c=1:C

subsets: fc(t, x, y) the set of feasible trajectories and i c(t, x, y) the set of infeasible trajectories, both with respect to c.
Then, the following ormula can be derived for robustness 	 tRBT x	 1213g	 (, , y); see Idris et al. , for more details:

	

Pf,c (t,x,y)= ∑ P(traj i ) =fc (t,x,y)	 RBT(t,x,y) = Pf (t,x,y) =∑ Pc × 	 fc(t,x, Y)	 (1)
set of feasible trajectoryinstances i 	 N(t, x, y)	 c=1:C 	 fc (t, x, y) + i c (t, x, y)

where Pf,c is the probability of feasibility of the trajectory traj in a constraint situation c, which is the ratio of the
number of feasible trajectories fc to the total number of trajectories N, if the probability of each trajectory instance
P(traj i) is equal to 1/N(t,x,y).

(2) Adaptability is defined as the ability of the aircraft to change its planned trajectory in response to the
occurrence of a disturbance that renders the current planned trajectory infeasible. An adaptability metric ADP(t, x,
y) is measured by the number of feasible trajectories f(t, x, y) (with respect to all constraints) that are available for
the aircraft to use at (t, x, y) to regain feasibility. Then, given the probability distribution (Pc) of each constraint
situation c of C, ADP may be estimated by the average over C:

	

ADP(t, x, y) = f (t, x, y) = ∑ P × f (t, x, y)	 (2)
c=1:C

Adaptability decreases as the aircraft moves along a trajectory because the number of feasible trajectories
decreases. The special case of robustness given by (1) (robustness to totally random state disturbances) increases
over time because as the number of feasible trajectories (numerator) decreases the total number of trajectories
(denominator) decreases more rapidly by both infeasible and feasible trajectories.

B. Traffic Complexity Metrics
The impact of planning trajectories using the adaptability and robustness metrics on traffic complexity was

assessed using two main indicators: Consistency of a resulting flow pattern and dynamic density. Flow pattern
consistency was measured by the percentage of aircraft that followed a consistent pattern. The pattern was readily
apparent visually so no clustering technique was employed in the scenarios analyzed in this paper. The pattern was
scenario dependent as will be described in Section IV. A number of dynamic density indicators were selected from
the literature14-17, based on applicability (for example excluding indicators that are based on altitude variation and on
sector geometry). The indicators were not combined in a single metric because such combination would reflect
specific operational environment. Rather the indicators were measured and reported independently. The following is
a brief description of each of the indicators:

(1) Traffic density is the number of cells (the whole analyzed area is divided into sixty-four cells with equal
size) occupied by more than a certain number of aircrafts for each instant of time.

(2) Horizontal proximity is the inverse of the average weighted horizontal separation between all the aircraft
pairs for each instant of time. For each aircraft, the weighted horizontal separation is estimated based on the distance
to all the other aircrafts. Those aircrafts closer to the own aircraft are given more weight. 16

(3) Variance of headings using the standard deviation of the headings of all the aircrafts within a defined area.
The area is selected (as described in Section III.B and shown in Fig. 5 and 6) instead of the full area so that the
aircraft movement pattern can be reflected in the metric.

(4) The number of conflicts is the number of aircraft pairs with impending conflicts in a time horizon . The
measure is normalized by the number of aircrafts for each time step. Both aircraft state-based and the trajectory-
based conflicts are detected. 10 minutes conflict prediction time horizon was used in this analysis. For state-based
conflicts, the shortest distance between the aircraft pairs is estimated based on their speed, heading and initial
separation. This shortest distance is then compared with the minimum horizontal separation (a 5 nautical mile
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separation requirement was used) according to a published algorithm21 . The conflict is detected for this aircraft pair
if the estimated shortest distance is less than the minimum horizontal separation. The number of conflicts is also
estimated according to the resulting aircraft trajectories. For each time step, the aircraft pairs with horizontal
separation less than the minimal horizontal separation in the next 10 minutes is counted as impending conflict.

(5) Crossing angle is the average crossing angle of the aircraft pairs with impending conflict in . The
crossing angle is the acute angle between the paths of two converging aircraft predicted to be in conflict using the
state projection.

(6) Time to conflict is the inverse of average minimum time to the conflict for all the aircrafts with impending
conflicts in . For aircraft state-based conflicts, the time to conflict is the time to the closest approach point. While
for the trajectory-based conflicts, the time to conflict is to the time when the aircraft pair first lost the minimum
separation.

III. Trajectory Generation Algorithm

A dynamic programming algorithm was used to generate an aircraft trajectory using the robustness and
adaptability metrics. Because the intention of this analysis is to test a hypothesis rather than a real-time application,
the dynamic programming approach was selected due to its simple formulation and despite its numerical and storage
limitations. First the trajectory solution space is built as a tree of discrete states connected according to reachability
by the allowable discrete speed and heading values over the discrete time increments. Second, the robustness and
adaptability metrics are estimated at each state. Third and finally, a back-propagation algorithm computes a cost
function and builds a trajectory that optimizes the cost function.

A. Flexibility Metric Estimation
Under the assumptions of discrete

time and degrees of freedom, the 	 Blocked cells due to	 Reachability of point

number of trajectories was estimated 	 loss of separation 	 k over ε given by gk

using a convolution and filtering	 y

technique. 11 Fig. 2 demonstrates this	 ` r
method for calculating fc(t, x, y) from Grid of	 : 5 ' }`' ^`` 	 `	 Y '` >''	 r) ^£0 {,` F

discrete*	
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fc(tj , x, y) at time tj is known. The
function fc(tj-1, x, y) at the previous
time step tj-1 can be obtained by	 Figure 2. Discrete estimation of number of feasible trajectories
convoluting fc(tj , x, y) and the
function gk(x, y), which represents the number of trajectories that reach from a point k=(tj-1, x(k), y(k)) at time step
tj-1 to the next time step tj . The function gk(x, y) is shown as a conical shell in Fig. 2. However, if the point k is
infeasible (for example due to loss of separation) then fc(tj-1, x(k), y(k)) = 0. This requires a filtering step before each
convolution operation to zero out the values at infeasible states. Substituting a dummy variable i to denote sliding
the point k in the x-y plane, the function fc(tj-1, x, y) is given by the following equation, representing convolution and
filtering for infeasibility:

fc (t j-1, x, y) = Z Z f Jt j Jz A)g(x - z, y - A) if feasible
A z	 (3)

fc(t j-1, x, y) = 0	 if infeasible
This operation is applied starting from the destination step t = RTA and proceeding backwards to the current

state. The destination time step is initialized by setting f c(RTA, x, y) = 1 at the feasible states and zero elsewhere as
shown in Fig. 2. To compute the total number of trajectories, N(t, x, y) used in the denominator of the robustness



metric RBT, certain constraints are excluded from the filtering process (namely the constraints with respect to which
robustness is computed). In this paper robustness only to loss of separation with traffic and hazards is considered.
Therefore, the numerator filtering was applied to all cells that lead to separation loss as well as cells that lead to
violating speed and heading limits or violating the RTA constraint. On the other hand, filtering ignored loss of
separation but was applied to the RTA and heading and speed limit constraints for calculating the denominator.

Separation zones were modeled as circles with given radii surrounding each intruder aircraft trajectory. Because
a trajectory consists of discrete segments, each with constant speed and heading, the circle moves with constant
speed and heading for the duration of each segment. In each segment, the circle is enclosed with eight tangent
planes, each two opposing tangents resulting from a combination of heading and speed limits of the ownship aircraft
relative to the intruder (There are four such combinations). A cell loses (or is imminent to lose) separation if it falls
on the inside of all eight planes, within the time duration of the segment. Hazards are similarly modeled as circles
with zero speed. Under probabilistic models of disturbances, the estimation process is repeated for each constraint
situation c. Then, the estimates fc(t, x, y) are averaged over all situations C to obtain the adaptability or robustness
metrics (1) and (2). Examples of ADP and RBT are shown in Fig. 3 and 4 for an analysis case.

B. Cost Function and Trajectory Building
Using recursive back-propagation, starting from the final time step, the minimum cost of proceeding from each

cell to the destination is computed and stored. This minimum cost Q(t,x(k),y(k)) for each cell k is computed by
minimizing, over its reachable cells given by {(t+1,x,y):gk(t+1,x,y)=1 } in the next time step t+1, the sum of the
minimum cost Q(t+1,x,y) already computed for each of the reachable cells (t+1,x,y) plus the cost of proceeding
from k to that cell, given for short by q(k4(t+1,x,y)). A generic formula is:

Q(t, x(k), y(k)) = 
x yMin i1{Q(t + 1, x, y) + q(k → (t + 1, x, y)}

Four functions for the local cost q were used in the experiments reported in this paper. A function representing
minimizing path length was used as a baseline. Then, functions representing maximizing adaptability, maximizing
robustness, and maximizing both combined with minimizing path length:

q(k → (t + 1, x, y)) = distance(k → (t + 1, x, y)) = dist	 (4)

q(k → (t + 1, x, y)) = −ADP(k)	 (5)
q(k → (t + 1, x, y)) = −RBT(k)	 (6)

q(k → (t + 1, x, y)) = −ADP(k) − a T RBT(k) + b Tdist	 (7)
where a and b are weights that trade robustness and distance, respectively, with adaptability. They are raised to the
power of time T (measured from the end) to account for the exponential growth of ADP. After storing the optimal
costs for each cell, a forward loop builds a trajectory by tracing the optimal cells starting from the initial state. Any
ties were broken randomly.

IV. Complexity Impact Analysis

The estimation technique and trajectory optimization algorithm were implemented in a MATLAB tool. The
resulting trajectories were analyzed using the traffic complexity metrics described in Section III.B. First the
scenarios reported in this paper are described. Then, observations are made on the impact of trajectory planning,
using the four cost functions (4) through (7), on traffic complexity.

A. Analysis Scenario
The first of the two scenarios analyzed in this paper consists of a line of weather cells leaving two holes for

which two flows of traffic compete. The two traffic flows travel in opposite directions: one starts at x = 0, y = —120
nautical miles and heads towards x = 0, y = 80 nautical miles. The other flow starts at x = 0, y = 120 and ends at x =
0, y = —80 nautical miles. Five weather hazard cells are modeled as circles with radius of 20 nautical miles, and
located at x = 0 and y = {0, ±70, ±120 nautical miles}. See Fig. 5 in Section B with the results. The geometry of the
hazards and of the traffic start and end positions is selected to provide symmetry, such that the path length alone is
not a differentiator between selecting among the two holes. This ensures highlighting the impact of the robustness
and adaptability metrics compared to shortest path. Each traffic flow is generated with random entry times separated
by intervals between 5 and 7 minutes. All aircraft are limited to headings of ±60 degrees relative to the centerline
connecting the start and end positions, with 10-degree increments. They are also limited to a speed between 240 and
360 knots with 10-knot increments. Each aircraft is assigned an RTA at the destination that forces the aircraft to path
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stretch to meet the RTA. This was ensured by setting the RTA up to 10 minutes above the travel time at minimum
speed along a straight path. The RTA is met exactly with no tolerance at the destination point allowed.

The second scenario consists of a weather cell that causes four traffic flows crossing at right angles to go around
the weather cell in a roundabout. The weather cell is modeled as a circle with radius of 30 nautical miles located at
(x = 0, y = 0). The four traffic flows originate at (x = 0, y = —120), (x = 0, y = 120), (x = —120, y = 0) and (x = 120,
y = 0). They end respectively at (x = 0, y = 80), (x = 0, y = —80), (x = 80, y = 0) and (x = —80, y = 0). All units are in
nautical miles. Eight other hazard circles are added at the corners as shown in Fig. 6 (discussed in Section B) to
increase the traffic interaction around the hazard located in the center. The speed and heading limits and increments
are the same as in the first scenario. The entry times for each flow ranged between 6 and 8 minutes.

In both scenarios, each aircraft plans a trajectory to meet the RTA (using speed reduction and path stretching),
optimizing the four cost functions (4) through (7). Time increments of 2 minutes and square x-y cells of 2 nautical
miles are used in the estimation of the number of trajectories. The first aircraft does not encounter any traffic as it
plans its trajectory. Then, each following aircraft plans its trajectory assuming knowledge of the trajectories of all
preceding aircraft. These trajectories are surrounded by separation zones that, in addition to the weather hazards, are
avoided by the aircraft. Hazards and separation zones reduce the number of feasible trajectories. Therefore, earlier
aircraft are given priority while each later aircraft encounters exceedingly more traffic. No dynamic trajectory
modification is considered in the experiments run for this analysis. Each aircraft generates one trajectory upon its
entry and maintains this trajectory throughout. Also the experiment runs considered only deterministic aircraft
behavior. One trajectory is considered for each aircraft with probability of one. However, the separation requirement
around each aircraft was set to 10 nautical miles (instead of the required 5 nautical miles) in order to capture the
higher uncertainty in the rather long time horizon of these experiments. Fig. 3 shows an example of the adaptability
metric (ADP) at one time step of the solution space, for an aircraft that encounters the hazards of the first scenario.
Color shades are used to depict the log of the number of feasible trajectories. Fig. 4 shows an example of the
robustness metric (RBT) at one time step of the solution space using color shades. Note that adaptability is highest
near the center of the solution space around the central hazard, while robustness is highest near the extremities of the
solution space away from the central hazard. Also note that robustness here is with respect to the hazards and loss of
separation only and not to the RTA constraint or the speed and heading limits. Finally it should be noted that the
solution space is smaller in Fig. 4 because it is an earlier time step and that these figures are in a relative frame with
respect to the aircraft (hence the hazard y-location is 120 nautical miles rather than zero.

Figure 4. Example of adaptability metric map 	 Figure 3. Example of robustness metric map

Each scenario contained 80 aircraft distributed evenly among the flows. The resulting trajectories consist of
heading and speed decisions at each 2-minute increment. Finally they are analyzed for traffic complexity.

B. Results and Observations
Fig. 5 (a-e) demonstrate the resulting flow patterns in the first scenario and Fig. 6 (a-e) those in the second

scenario, using full trajectories. As a baseline the shortest path cost function was run twice, once without avoiding
the other traffic (cases a) and once with avoiding it (cases b). Traffic avoidance was turned off to depict current
practice where conflict avoidance is only applied in a short time horizon of 10-20 minutes. Shortest-path with traffic
avoidance sets another baseline for demonstrating the marginal effect of using the adaptability and robustness
metrics instead. When using adaptability and robustness metrics (cases c-e) traffic is naturally avoided
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Pattern: outer lanes before hole,
centerline after hazard

(e) Maximum adaptability and robustness, and
shortest path

Pattern: Mostly northbound through right hole
and southbound through left hole

Figure 5. Flow patterns in weather line scenario

Pattern: spread out as possible

because the number of trajectories at cells that lose
separation is zero. However, loss of separation is not
guaranteed because of the coarse discretization of the
solution space. The larger the time and space increments are
the larger the chance of losing separation.

These figures demonstrate that in both scenarios, using
robustness and adaptability as objectives for individual
trajectory planning resulted in more structured aggregate
traffic flow. Looking at the headings of the aircraft, shown
by a circle at the end of the trajectories, one can see the
following. In case a, which used shortest path without traffic
avoidance, aircraft varied in selecting their path relative to
the hazard in both scenarios resulting in closer proximity
and more random flow patterns.

All the other cases resulted in a more structured traffic
pattern but in a different manner: In case b of Fig. 5, which
used shortest path but avoided traffic, most aircraft traveled
through the holes in a uniform direction, with occasional
misalignment. In case c of Fig. 5, which used adaptability,

(a) Shortest path without traffic avoidance (b) Shortest path with traffic avoidance

ed for
c density
ement

No specific pattern

(c) Maximum adaptability only

Pattern: northbound mostly through left
hole, southbound mostly through right hole

(d) Maximum robustness only



ea used for
namic density
asurement

(a) Shortest path without traffic avoidance
	

(b) Shortest path with traffic avoidance

No pattern: 60% of aircraft counterclockwise (blue)
	

Pattern: 68% of aircraft counterclockwise (blue)

(d) Maximum robustness only(c) Maximum adaptability only

Pattern: 97% of aircraft counterclockwise (blue)	 Pattern: 70% of aircraft counterclockwise (blue)

(e) Maximum adaptability and robustness, and
shortest path

Pattern: 84% of aircraft counterclockwise (blue)

Figure 6. Flow patterns in roundabout scenario

aircraft formed outer lanes before the hazard and traveled
along the centerline afterwards. This pattern resulted
because adaptability tended to concentrate the aircraft
trajectory close to the centerline connecting the initial and
final locations. This is because the number of feasible
trajectories is highest near the centerline (as shown in Fig.
3) which caused the aircraft to hug the central hazard. The
holes in this scenario were large enough to allow the
aircraft to travel through them in both directions. On the
other hand, robustness, which was used in case d, tended
to send the aircraft away from each other and from the
hazards increasing the spacing between them. This caused
aircraft in case d to spread out more than in cases b and c,
and to exhibit a less structured manner. Aircraft in both
cases c and d separated from each other more than in
cases a and b. In case e, the aircraft formed a
unidirectional flow through each of the holes.

In the roundabout scenario of Fig. 6, most aircraft
turned around the central hazard in a uniform direction
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relative to the shortest path case a. This is indicated in the figure by the percentage of aircraft that selected the
counterclockwise direction (using the darker, blue color). This percentage is higher in cases c-e (70-97 percent) than
cases a and b (60-68 percent).

The manner and degree to which the traffic self organizes depends on a number of factors. For example, the
following additional observations are made:

(1) cases e of Fig. 5 and 6 combine shortest path, adaptability and robustness in the cost function (12), with a =
40 and b = 5000. These cases exhibited aspects from each of the b, c, and d cases: Because of robustness, aircraft
spread out more. Because of adaptability, they formed a lane closer to the centerline especially after the hazard.
Because of minimizing distance trajectories are smoother. The weights used in this example were not optimized and
the tradeoff between these factors is a subject of further research.

(2) The density of the traffic, a function of both the arrival rate and the size of the hazards, affects the pattern.
For example, the aircraft managed to go through the holes in Fig. 5 in both directions.

(3) The first aircraft in the scenario does not encounter any traffic and hence makes random decisions if there are
ties between trajectories. The emerging traffic pattern depends on these early decisions. For the same reason, when
traffic density declines the pattern may switch to a new one.

(4) All aircraft in these scenarios used the same objective function. This induces implicit coordination and rules
and influences the emerging pattern.

(5) The shortest path case, with traffic avoidance (b) is closer to the adaptability case (c) than the robustness case
(d). This is because the shortest path is close to the centerline where adaptability is high. The shortest path
trajectory, however, differs from the most adaptable trajectory because it uses the minimum speed (to minimize path
stretching). Therefore these trajectories were smoother and exhibited less turns. Adaptable trajectories on the other
hand tended to zigzag around the centerline. Note that the jaggedness of the trajectories in all cases is an artifact of
the low fidelity model used for this initial analysis to test the concept. Smoothness will be addressed and added in
future research while integrating the function with a higher fidelity trajectory generator.

The resulting aircraft trajectories were also analyzed for the dynamic density indicators listed in Section II.B.
The results are shown in Fig. 7 through 11, where the left side plots are for the weather-line scenario of Fig. 5 and
the plots on the right side are for the roundabout scenario of Fig 6.

Figure 7 shows the aircraft density over a grid of sixty four square cells into which the full areas of the scenarios
in Fig. 5 and 6 were divided. The number of cells with more than 3 aircraft over the duration shows that the cases (c)
and (e) where aircrafts use adaptability have less high density cells than all the other cases for the weather line
scenario of Fig. 5 (left plot). Case (a) with shortest path without traffic avoidance exhibits more cells with high
traffic density. While in the right-side plot, for the roundabout scenario of Fig. 6, all the cases that avoided traffic
(cases b-e) showed similar density, probably because this scenario is more constraining in terms of available
airspace.

Figure 7. Aircraft density analysis
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Figure 8 compares the cases in terms of proximity. For both scenarios, case (a) where aircraft used shortest path
without avoidance consistently shows the highest proximity measure. All cases (b-e) where aircrafts avoided traffic
exhibit similar proximity.

Figure 8. Proximity analysis

Figure 9 compares the average heading within bounded areas. The areas were selected to make sure that each
reflects a typical sector that a controller may handle within the scenario and to avoid the source and sink areas where
aircraft would interfere artificially due to the scenario design. For the weather-line scenario, two areas were selected
between the central hazard and the left and right hazards, respectively. For the roundabout scenario, four areas were
selected between the central hazard and each of the corner hazards. For both scenarios, the standard deviation of
headings for traffic within each area exhibits similar behavior, so only one plot is presented for the areas highlighted
in Fig. 5 and 6. For the roundabout scenario, case (c) where aircraft use adaptability shows much less variability in
headings than the other cases, which is expected since the traffic for this case is more organized from the plots of
flow pattern in Fig. 6. While for weather-line scenario, the difference in heading variability between the cases is not
apparent.

Figure 9. Heading variability analysis

For both scenarios, the total number of the aircraft pairs predicted to be in conflicts in 10 minutes is presented in
Fig. 10-a and 10-b using state-based and trajectory-based prediction, respectively. As expected, the case (a) where
aircraft used shortest path without traffic avoidance consistently shows the highest number of conflicts. For the two-
hole scenario of Fig. 5 (left plot), no conflict is detected by for case (c) using maximum adaptability. Meanwhile, the
trajectory-based conflicts are much less than state-based conflicts for all the cases, showing that some of the
conflicts do not materialize if the traffic intent is accounted for.
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Figure 10. Impending conflicts analysis

It was found from previous plots that case (a) where aircraft use shortest path without traffic avoidance created
more impending conflicts than the other four cases. The plots of crossing angle in Fig. 11 show that those conflicts
resulting from case (a) are closer to head-on conflicts (180 degree crossing angle). For the roundabout scenario, the
crossing angle for case (c) using adaptability is close to 90 degree. A study 16 mentions that 90 degree conflicts are
the least complex. The time-to-conflict metric also showed (plot not included) that case (a) was the worst and case
(c) was the best.
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Figure 11. Impending conflicts crossing angle analysis
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V. Conclusions and Future Extensions
The analysis reported in this paper demonstrated that using adaptability and robustness metrics in planning

flexible aircraft trajectories results in traffic complexity mitigation. Two scenarios showed signs of self separation
and self organization when using these metrics. The impact was quantified using dynamic density indicators. They
indicated that using adaptability and robustness reduced aircraft density and the potential for conflict between
aircraft. These flexibility metrics can be combined with other metrics in the trajectory planning of pilots, airlines,
and traffic managers. By incorporating these metrics, the contribution of each aircraft to traffic complexity would be
reduced, even without explicit coordination among aircraft or for the aircraft by a ground system.

The results reported in this paper are promising, and open the door for a wide range of future research. Such
research extension includes the investigation of: the sensitivity to varying a number of factors such as traffic density
and severity of constraints; the effect of dynamic and stochastic decision making where each aircraft updates its
trajectory plan over time in response to uncertainty; sensitivity to varying the cost function and the tradeoff between
adaptability, robustness and other metrics of interest to users and traffic managers; the effect of non-uniform,
competing cost functions among different aircraft; the impact of explicit rules and coordination on furthering self
organization; and the application of the metrics and algorithms presented in higher-fidelity real-time systems.
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